Rice (Oryza sativa L.) Bioeconomy: A Comprehensive DEA Analysis
DOI:
https://doi.org/10.47654/v29y2025i2p91-120Keywords:
Rice efficiency, DEA, Bootstrapping, Sustainability, BioeconomyAbstract
Purpose: The research focuses on analyzing the technical efficiency of a sample of 612 rice (Oryza sativa L.) producers in Ecuador during the year 2019. The objective is to explore productivity and efficiency gaps to guide decision-making and sustainable policies in the rice sector.
Design/methodology/approach: By employing Data Envelopment Analysis (DEA)- a non-parametric method used to measure productive performance- this study includes BCC model (which reflect pure technical efficiency by comparing farm only against others of similar sizes for variable returns to scale) and CCR model (which reflect overall technical efficiency, including the effect o the farm scale assumes constant returns to scale). It also incorporates Super Efficiency and Bootstrapping methods to ensure robust statistical validation.
Findings: The results reveal significant technical inefficiencies; the mean technical efficiency (the ability to produce maximum output with inputs) under the BCC model was 0.3641, while the CCR model was 0.2817. These findings indicate that rice producers could potentially reduce their input consumption (seeds, fertilizers, labor, water) by 63.59% to 71.83% without compromising current output levels, highlighting a critical need for improved resource management.
Implications: The findings highlight the need for cooperative initiatives and sustainable farming practices to enhance productivity in Ecuador's rice bioeconomy.
Originality: This research pioneers the application of DEA combined with bootstrapping in the Ecuadorian rice sector, offering a novel framework for the agricultural policy and resource allocation.
References
Abdulkarim, K., & Kajuru, J. Y. (2017). Application of non-parametric methods to local paddy rice yield in Funtua Senatorial District of Katsina State, Nigeria. Age, 31(40), 21.
Aliyu, A., & Bello, K. (2018). Data envelopment analysis of rubber smallholders: BCC and CCR models and bootstrapping technique. International Journal of Research-Granthaalayah, 6, 346-368. https://doi.org/10.29121/granthaalayah.v6.i5.2018.1463
Alonso Quintero, O. A. (2014). Los cultivadores de arroz de economía campesina a partir del censo nacional agropecuario 2014. (Tesis de doctorado. Pontificia Universidad Javeriana). Repositorio intitucional PUJ. https://doi.org/10.11144/Javeriana.10554.49737
Aslam, M. S., Xue, P. H., Bashir, S., Alfakhri, Y., Nurunnabi, M., & Nguyen, V. C. (2021). Assessment of rice and wheat production efficiency based on data envelopment analysis. Environmental Science and Pollution Research. 28, 38522-38534. https://doi.org/10.1007/s11356-021-12892-z
Awan, T. H., Cruz P, C. S., & Chauhan, B. S. (2015). Agronomic indices, growth, yield-contributing traits, and yield of dry-seeded rice under varying herbicides. Field Crops Research, 177, 15-25. https://doi.org/10.1016/j.fcr.2015.03.001
Awang, Z., Afthanorhan, A., & Asri, M. A. (2015). Parametric and nonparametric approach in structural equation modeling (SEM): The application of bootstrapping. Modern Applied Science, 9(9), 58. https://doi.org/10.5539/mas.v9n9p58
Banjanovic, E. S., & Osborne, J. W. (2019). Confidence intervals for effect sizes: Applying bootstrap resampling. Practical Assessment, Research, and Evaluation. 21(1):5.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science. 30(9), 1078-92. https://doi.org/10.1287/mnsc.30.9.1078
Battese, G. E., & Coelli, T. J. (1992). Frontier production functions. Technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 3, 153–169. https://doi.org/10.1007/BF00158774
Bravo-Ureta, B. E., Jara-Rojas, R., Lachaud, M. A., Moreira L, V. H., & Scheierling, S. M. (2015). Water and farm efficiency: Insights from the frontier literature. AgEcon Search. 28, 1-28. https://doi.org/10.22004/ag.econ.206076
Canaviri, J. Q., & Menéndez Gámiz, C. R. (2023). Desde la bioeconomía de Georgescu-Roegen hasta la Bioeconomía andeamazónica. C3-BIOECONOMY: Circular and Sustainable Bioeconomy, (4), 25-54. https://doi.org/10.21071/c3b.vi4.16211
Castro, M., Duarte, A. R., Villegas, A., & Chanci, L. (2023). The effect of crop insurance in Ecuadorian rice farming: a technical efficiency approach. Agricultural Finance Review. 83(3) 478–497. https://doi.org/10.1108/AFR-10-2022-0122
Ceballos Pérez, S. G., Brambila Paz, J. D. J., & Pérez Cerecedo, V. (2022). Residuos sólidos urbanos y economía circular en Pachuca, Hidalgo, México. Acta Universitaria, 32. e3437. https://doi.org/10.15174/au.2022.3437
Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research. 2(6), 429-44. https://doi.org/10.1016/0377-2217(78)90138-8
Chegini, M. G., Yousefi, S., & Borojani, G. (2016). Factors affecting the efficiency of human resources in Guilan's rice processing industry. International Journal of Agricultural Management and Development (IJAMAD). 7(3), 383-93.
Cheng, Y., Hui, Y., Liu, S., & Wong, W. K. (2022). Could significant regression be treated as insignificant: An anomaly in statistics?. Communications in Statistics: Case Studies, Data Analysis and Applications, 8(1), 133-151. https://doi.org/10.1080/23737484.2021.1986171
Cheng, Y., Hui, Y., McAleer, M., & Wong, W. K. (2021). Spurious relationships for nearly non-stationary series. Journal of Risk and Financial Management, 14(8), 366. https://doi.org/10.3390/jrfm14080366
Cobos Mora, F. J., Gómez Pando, L. R., Reyes Borja, W. O., & Medina Litardo, R. C. (2021). Sustentabilidad de dos sistemas de producción de arroz, uno en condiciones de salinidad en la zona de Yaguachi y otro en condiciones normales en el sistema de riego y drenaje Babahoyo, Ecuador. Ecología Aplicada. 20(1), 65-81. https://doi.org/10.21704/rea.v20i1.1691
Coelli, T. J. (1997). A multi-stage methodology for the solution of oriented DEA models, mimeo. Armidale: Centre for efficiency and productivity analysis, (University of New England; 1997).
Coelli, T. J., Prasada Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. Springer New York, NY. https://doi.org/10.1007/b136381
Coronado, F., Charles, V., & Dwyer, R. J. (2017). Measuring regional competitiveness through agricultural indices of productivity: The Peruvian case. World Journal of Entrepreneurship, Management and Sustainable Development. 13(2), 78-95. https://doi.org/10.1108/WJEMSD-06-2016-0031
Deng, J., Harrison, M. T., Liu, K., Ye, J., Xiong, X., Fahad, S., & Zhang, Y. (2022). Integrated crop management practices improve grain yield and resource use efficiency of super hybrid rice. Frontiers in Plant Science, 13, 851562. https://doi.org/10.3389/fpls.2022.851562
Deroliya, P., Ghosh, M., Mohanty, M. P., Ghosh, S., Rao, K. D., & Karmakar, S. (2022). A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions. Science of the Total Environment, 851, 158002. https://doi.org/10.1016/j.scitotenv.2022.158002
Diaz Valderramo, N. I. (2024). Uso de la tecnología en la aplicación de los fertilizantes en el cultivo de arroz (Oryza sativa L). (Bachelor's thesis, BABAHOYO: UTB, 2024).
Dios-Palomares, R., Alcaide, D., Diz, J., Jurado, M., Prieto, A., Morantes, M., & Zuniga, C. A. (2015). Analysis of the efficiency of farming systems in Latin America and the Caribbean considering environmental issues. Revista Cientifica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia. 25 (1), 43-50.
García Pinela, C. L. (2020). Importancia de la zeolita sobre la eficiencia de fertilizantes nitrogenados, para incrementar los rendimientos en el cultivo de arroz (Oryza sativa L.) en el Ecuador. BS thesis. BABAHOYO: UTB.
Georgescu-Roegen, N. (1976). Energy and Economic Myths: Institutional and Analytical Economic Essays. Pergamon Press. Nueva York, 1976, p. 236.
Ghosh, A., & Kathuria, V. (2016). Analysing efficiency of rice farming in West Bengal, India: A bootstrap approach. Journal of South Asian Development. 11 (2),138-60.
González Calle, T. S., & Zapata Palacios, C. D. (2022). Propuesta de gestión financiera aplicada a empresas del subsector A0112: Cultivo de arroz del Ecuador (Bachelor's thesis, Universidad del Azuay).
Hernández-Chover, V., Castellet-Viciano, L., Fuentes, R., & Hernández-Sancho, F. (2023). Circular economy and efficiency to ensure the sustainability in the wastewater treatment plants. Journal of cleaner production. 384, 135563.
Işgın, T., Özel, R., Bilgiç, A., Florkowski, W. J., & Sevinç, M. R. (2020). DEA performance measurements in cotton production of Harran Plain, Turkey: A single and double bootstrap truncated regression Approaches. Agriculture. 10(4), 108. https://doi.org/10.3390/agriculture10040108
Khaliq, A., Matloob, A., & Riaz, Y. (2012). Bio-economic and qualitative impact of reduced herbicide use in direct seeded fine rice through multipurpose tree water extracts. Chilean Journal of Agricultural Research. 72(3), 350. https://doi.org/10.4067/S0718-58392012000300008
Kumar, S., Gulati, R., Kumar, S., & Gulati, R. (2014). Measurement of bank efficiency: Analytical methods. Deregulation and efficiency of Indian Banks, 49-117. https://doi.org/10.1007/978-81-322-1545-5_3
Labarta, R. A., Andrade, R. S., Castro-Alvarez, M., Perez Yanez, P., Marin, D., Urioste, D., Sergio, A., Lopera, D. C., Zúniga-Gonzalez, C. A., & Esponda Bernal, M. M. (2024). “Household Survey and Bioeconomy data of rice producers in Ecuador”, Mendeley Data, V3, https://doi.org/10.17632/xzycyvmks2.3
Ledesma, C., & Pita, B. (2016). Cadena de valor del sector arrocero del canton Daule, Provincia del Guayas y su evaluación, Caso de estudio: “Piladora Angelita”, Beau Bassin, Mauritius., 123 p.
Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the andes and its impact on agriculture: a systematic review. Scientia Agropecuaria. 12(1). https://doi.org/10.17268/sci.agropecu.2021.012
Majiwa, E., Lee, B. L., Wilson, C., Fujii, H., & Managi, S. (2018). A network data envelopment analysis (NDEA) model of post-harvest handling: the case of Kenya’s rice processing industry. Food Security. 10, 631-648. https://doi.org/10.1007/s12571-018-0809-0
Manos, B., Begum, M. A., Kamruzzaman, M., Papathanasiou, J., & Papavasileiou, A. (2009). Technical efficiency of rice farms in Northern Greece. International Journal of Sustainable Development & World Ecology. 16(1),1-6.
Marín, D., Urioste, S., Celi, R., Castro, M., Pérez, P., Aguilar, D., Labarta, R., & Andrade, R. (2021). Caracterización del sector arrocero en Ecuador 2014-2019: ¿Está cambiando el manejo del cultivo? Publicación CIAT No. 511. Cali, Colombia; Centro Internacional de Agricultura Tropical (CIAT); Fondo Latinoamericano para Arroz de Riego (FLAR); Ministerio de Agricultura y Ganadería (MAG) de Ecuador; Instituto Nacional de Investigaciones Agropecuarias (INIAP) de Ecuador.
Mejía Soto, E., & Serna Mendoza, C. A. (2015). La contabilidad en función de la sustentabilidad: una mirada desde el desarrollo económico alternativo. Quipukamayoc. 23 (44). https://doi.org/10.15381/quipu.v23i44.11634
Menendez Vera, P. J., Menendez Delgado, C. F., Gonzalez, M. P., & Leyva Vazquez, M. Y. (2016). Marketing skills as determinants that underpin the competitiveness of the rice industry in Yaguachi canton. Application of SVN numbers to the prioritization of strategies. Neutrosophic Sets and Systems. 13(1), 9.
Miah, M. N. (2013). Efficiency performance of rice farms in northern Bangladesh: An application of the stochastic frontier and data envelopment analysis (DEA) Mode. (Doctoral dissertation, University of Rajshahi).
Mohidem, N. A., Hashim, N., Shamsudin, R., & Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), 741. https://doi.org/10.3390/agriculture12060741
Morán, W. C., Torres, B. Q., & Morales, C. L. (2018). Análisis de la participación de los productores de arroz en la agricultura familiar del cantón Samborondón-Ecuador. Revista Espacios. 39(48),17-28.
Munim, Z. H. (2020). Does higher technical efficiency induce a higher service level? A paradox association in the context of port operations. The Asian Journal of Shipping and Logistics. 36(4),157-68. https://doi.org/10.1016/j.ajsl.2020.02.001
Murillo, C. C., Morales, M., Feria, U. P., & Dorado, R. M. (2020). Autosuficiencia alimentaria: Un enfoque desde la eficiencia en la provincia de Esmeraldas, República del Ecuador. Studies of Applied Economics, 38 (3). https://doi.org/10.25115/eea.v38i3.3196
Nassiri, S. M., & Singh, S. (2009). Study on energy use efficiency for paddy crops using data envelopment analysis (DEA) technique. Applied energy.86(7-8),1320-1325. https://doi.org/10.1016/j.apenergy.2008.10.007
Niu, Y., Lin, C., Liu, X., Chen, Y., Hu, X., Zhang, Y., & Zhu, S. (2020). Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Applied Physics Letters. 116(10).
Ochoa, M., Tierra, W., Tupuna-Yerovi, D. S., Guanoluisa, D., Otero, X. L., & Ruales, J. (2020). Assessment of cadmium and lead contamination in rice farming soils and rice (Oryza sativa L.) from Guayas province in Ecuador. Environmental Pollution.o 260, 114050. https://doi.org/10.1016/j.envpol.2020.114050
Puth, M. T., Neuhäuser, M., & Ruxton, G. D. (2015). On the variety of methods for calculating confidence intervals by bootstrapping. Journal of Animal Ecology. 84(4):892-7.
Quijije, B., Carvajal, S., García, K., & Cedeño, W. (2019). Costo, volumen y utilidad del cultivo de arroz, cantón Samborondón (Ecuador). Revista Espacios. Vol. 40(7), 16.
Rashidghalam, M. (2018). Performance measurement and a review of literature. Measurement and analysis of performance of industrial crop production: The case of Iran’s cotton and sugar beet production, 23–39. https://doi.org/10.1007/978-981-13-0092-9_3
Rathi, S., & Prakash, V. A. (2018). Study on technical efficiency of rice production in India-DEA. International Journal of Research in Social Sciences. 8(9), 205–213.
Sánchez-Sabando, C. F., Sánchez-Urdaneta, A. B., Sánchez-Mora, F. D., Loor-Escobar, G. E., & Olivares, B. O. (2024). Fertilization for Growth or Feeding the Weeds? A Deep Dive into Nitrogen’s Role in Rice Dynamics in Ecuador. Life, 14(12), 1601. https://doi.org/10.3390/life14121601
Simar, L., & Wilson, P. W. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 44(1), 49–61. https://doi.org/10.1287/mnsc.44.1.49
Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 136(1), 31–64. https://doi.org/10.1016/j.jeconom.2005.07.009
Singh, M., & Ahmed, S. (2021). IoT based smart water management systems: A systematic review. Materials Today: Proceedings. 46, 5211-5218.
Sueyoshi, T., & Aoki, S. (2001). A use of a nonparametric statistic for DEA frontier shift: The Kruskal and Wallis rank test. Omega. 29(1), 1-18. https://doi.org/10.1016/S0305-0483(00)00024-4
Umetsu, C. (2022). Rice variety and sustainable farming: A case study in the Mekong Delta, Vietnam. Environmental Challenges. 8, 100532. https://doi.org/10.1016/j.envc.2022.100532
Viera-Arroyo, W., Binego, L., Ryans, F., López, D., Moya, M., Vera, L., & Caicedo, C. (2025). Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential. Sustainability, 17(13), 6053. https://doi.org/10.3390/su17136053
Viteri, G. I., & Zambrano, C. E. (2016). Comercialización de arroz en Ecuador: Análisis de la evolución de precios en el eslabón productor-consumidor. Revista Ciencia y Tecnología. 9(2), 11-7. https://doi.org/10.18779/cyt.v9i2.192
Wong, W.-K., Pham, M. T., & Yue, M. (2024). Could regressing a stationary series on a non-stationary series obtain meaningful outcomes - a remedy. The International Journal of Finance, 36, 1-20. https://doi.org/10.2139/ssrn.5746563
Wong, W. K., & Yue, M. (2024). Could regressing a stationary series on a non-stationary series obtain meaningful outcomes?. Annals of Financial Economics, 19(03), 2450011. https://doi.org/10.1142/S2010495224500118
Zhu, X., Li, Y., Zhang, P., Wei, Y., Zheng, X., & Xie, L. (2019). Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy, 88, 104083. https://doi.org/10.1016/j.landusepol.2019.104083
Zuniga-Gonzalez, C. A. (2023). TFP Bioeconomy Impact post Covid-19 on the agricultural economy. PLoS ONE. 18(11), e0288885. https://doi.org/10.1371/journal.pone.0288885
Zuniga-Gonzalez, C. A., & Jaramillo-Villanueva, J. L. (2024). Frontier model of the environmental inefficiency effects on livestock bioeconomy. F1000Research. 11, 1382. https://doi.org/10.12688/f1000research.128071.3
Zuniga-Gonzalez, C. A., Jaramillo-Villanueva, J. L., & Blanco-Roa, N. E. (2024a). Inputs-Oriented VRS DEA in dairy farms [version 2; peer review: 1 approved with reservations, 2 not approved]. F1000Research. 1,(12), 901. https://doi.org/10.12688/f1000research.132421.2
Zuniga-Gonzalez, C. A., López, M. R., Icabaceta, J. L., Vivas-Viachica, E. A., & Blanco-Orozco, N. V. (2022b). Epistemology of Bioeconomy. Rev. Iberoam. Bioecon. Cambio Clim. 8(15), 1786–1796. https://doi.org/10.5377/ribcc.v8i15.13986
Zuniga-Gonzalez, C. A., Moreno-Mayorga, L., & Quiroz-Medina, C. (2022a). Estudio de la eficiencia técnica en escuelas de campo de Nicaragua. Revista Tecnología en Marcha, 35(3), 128-140. https://doi.org/10.18845/tm.v35i3.5696
Zuniga-Gonzalez, C. A., Quiroga-Canaviri, J. L., Brambila-Paz, J. J., Ceballos-Pérez, S. G., & Rojas-Rojas, M. M. (2024b). Formulation of an innovative model for the bioeconomy. PLoS One, 19(11), e0309358. https://doi.org/10.1371/journal.pone.0309358
Published
Issue
Section
Categories
License
Copyright (c) 2025 M. D. Castro-Alvarez (Author); C.A. Zuniga-Gonzalez (Corresponding Author); W. Mercado, R.S. Andrade (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Scientific and Business World