Forecasting Vietnam inflation using machine learning approaches: A comprehensive analysis
DOI:
https://doi.org/10.47654/v30y2026i1p136-185Keywords:
Inflation, forecasting, machine learning, deep learning, COVID-19 crisis, VietnamAbstract
Purpose: This study investigates the predictive ability of selected machine learning methods for inflation prediction in Vietnam.
Design/methodology/approach: This study computes forecasts using autoregressive integrated moving average, extreme gradient boosting, linear regression, random forest, K-nearest neighbour, four variants of the recurrent neural network, and causal convolutional neural network. This research assesses their properties according to criteria from the optimal forecast literature. Then, their performance is compared with the predictions of the International Monetary Fund and Asian Development Bank used by the State Bank of Vietnam as a policy benchmark tool.
Findings: Although there is no single best model to predict inflation for various horizons, the findings suggest that the K-nearest neighbour (KNN) model provides better forecasts than others for the 12-month horizon. These forecasts are relatively in line with the projections of well-known international organisations under several conditions. The KNN forecast even outperformed those when considering the COVID-19 crisis.
Research implications: The results suggest that the machine learning models selected in this study could be used as an additional benchmark tool for policy decision-making under uncertainty, offering a data-driven approach to supplement traditional economic judgment.
Originality/value: This study is the first attempt to employ different advanced machine learning methods to predict inflation in Vietnam. More importantly, these results are then compared with other conventional ones and benchmark forecasts for robustness checks.
References
Adeosun, O. A., Tabash, M. I., Vo, X. V., & Anagreh, S. (2023). Uncertainty measures and inflation dynamics in selected global players: a wavelet approach. Quality & Quantity, 57(4), 3389-3424. https://doi.org/10.1007/s11135-022-01513-7
Almosova, A., & Andresen, N. (2023). Nonlinear inflation forecasting with recurrent neural networks. Journal of Forecasting, 42(2), 240-259. https://doi.org/10.1002/for.2901
Altman, N. S. (1992). An introduction to Kernel and Nearest-Neighbor nonparametric regression. The American Statistician, 46(3), 175-185. https://doi.org/10.1080/00031305.1992.10475879
Alvarez, F., Lucas, R. E., & Weber, W. E. (2001). Interest rates and inflation. American Economic Review, 91(2), 219–225. https://doi.org/10.1257/aer.91.2.219
Aras, S., & Lisboa, P. J. G. (2022). Explainable inflation forecasts by machine learning models. Expert Systems with Applications, 207, 117982. https://doi.org/10.1016/j.eswa.2022.117982
Araujo, G. S., & Gaglianone, W. P. (2023). Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models. Latin American Journal of Central Banking, 4(2), 100087. https://doi.org/10.1016/j.latcb.2023.100087
Arnold, C., Biedebach, L., Küpfer, A., & Neunhoeffer, M. (2024). The role of hyperparameters in machine learning models and how to tune them. Political Science Research and Methods, 12(4), 841-848. https://doi.org/10.1017/psrm.2023.61
Artis, M., & Marcellino, M. (2001). Fiscal forecasting: The track record of the IMF, OECD and EC. The Econometrics Journal, 4(1), 20-36. https://doi.org/10.1111/1368-423X.00051
Artis, M. J. (1996). How accurate are the IMF's short-term forecasts? Another examination of the World Economic Outlook. IMF Working Papers, 1996(089), 1-94. https://doi.org/10.5089/9781451851250.001
Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685-725. https://doi.org/10.1146/annurev-economics-080217-053433
Atkeson, A., & Ohanian, L. E. (2001). Are Phillips curves useful for forecasting inflation? Federal Reserve Bank of Minneapolis Quarterly Review, 25(1), 2-11.
Auer, R. A., Levchenko, A. A., & Sauré, P. (2019). International inflation spillovers through input linkages. The Review of Economics and Statistics, 101(3), 507-521. https://doi.org/10.1162/rest_a_00781
Baciu, I.-C. (2015). Stochastic models for forecasting inflation rate: Empirical evidence from Romania. Procedia Economics and Finance, 20, 44-52. https://doi.org/10.1016/S2212-5671(15)00045-3
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593-1636. https://doi.org/10.1093/qje/qjw024
Balcilar, M., Gupta, R., & Jooste, C. (2017). Long memory, economic policy uncertainty and forecasting US inflation: a Bayesian VARFIMA approach. Applied Economics, 49(11), 1047-1054. https://doi.org/10.1080/00036846.2016.1210777
Bańbura, M., & Bobeica, E. (2023). Does the Phillips curve help to forecast euro area inflation? International Journal of Forecasting, 39(1), 364-390. https://doi.org/10.1016/j.ijforecast.2021.12.001
Bansal, M., Goyal, A., & Choudhary, A. (2022). A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, 3, 100071. https://doi.org/10.1016/j.dajour.2022.100071
Barkan, O., Benchimol, J., Caspi, I., Cohen, E., Hammer, A., & Koenigstein, N. (2023). Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks. International Journal of Forecasting, 39(3), 1145-1162. https://doi.org/10.1016/j.ijforecast.2022.04.009
Barrionuevo, M. J. M. (1992). A simple forecasting accuracy criterion under rational expectations: Evidence from the World Economic Outlook and Time Series Models. IMF Working Papers, 1992(048), 1-34. https://doi.org/10.5089/9781451972238.001
Bäurle, G., Gubler, M., & Känzig, D. R. (2021). International inflation spillovers: The role of different shocks. International Journal of Central Banking, 17(1), 191-230.
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192-213. https://doi.org/10.1016/j.ins.2011.12.028
Binner, J. M., Tino, P., Tepper, J., Anderson, R., Jones, B., & Kendall, G. (2010). Does money matter in inflation forecasting? Physica A: Statistical Mechanics and its Applications, 389(21), 4793-4808. https://doi.org/10.1016/j.physa.2010.06.015
Bittencourt, M. (2011). Inflation and financial development: Evidence from Brazil. Economic Modelling, 28(1), 91-99. https://doi.org/10.1016/j.econmod.2010.09.021
Boaretto, G., & Medeiros, M. C. (2023). Forecasting inflation using disaggregates and machine learning. arXiv, 1-44. https://doi.org/10.48550/arXiv.2308.11173
Bos, C. S., Franses, P. H., & Ooms, M. (2002). Inflation, forecast intervals and long memory regression models. International Journal of Forecasting, 18(2), 243-264. https://doi.org/10.1016/S0169-2070(01)00156-X
Boubaker, S., Le, T. D. Q., Ngo, T., & Manita, R. (2025). Predicting the performance of MSMEs: a hybrid DEA-machine learning approach. Annals of Operations Research, 350, 550-577. https://doi.org/10.1007/s10479-023-05230-8
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Caldara, D., Conlisk, S., Iacoviello, M., & Penn, M. (2026). Do geopolitical risks raise or lower inflation? Journal of International Economics, 159, 104188. https://doi.org/10.1016/j.jinteco.2025.104188
Chan, J. W., & Yeo, C. K. (2024). A Transformer based approach to electricity load forecasting. The Electricity Journal, 37(2), 107370. https://doi.org/10.1016/j.tej.2024.107370
Cheng, Y., Hui, Y., Liu, S., & Wong, W.-K. (2022). Could significant regression be treated as insignificant: An anomaly in statistics? Communications in Statistics: Case Studies, Data Analysis and Applications, 8(1), 133-151. https://doi.org/10.1080/23737484.2021.1986171
Cheng, Y., Hui, Y., McAleer, M., & Wong, W.-K. (2021). Spurious relationships for nearly non-stationary series. Journal of Risk and Financial Management, 14(8), 366. https://doi.org/10.3390/jrfm14080366
Ciner, C. (2011). Commodity prices and inflation: Testing in the frequency domain. Research in International Business and Finance, 25(3), 229-237. https://doi.org/10.1016/j.ribaf.2011.02.001
Cogley, T., & Sbordone, A. M. (2008). Trend inflation, indexation, and inflation persistence in the New Keynesian Phillips Curve. American Economic Review, 98(5), 2101–2126. https://doi.org/10.1257/aer.98.5.2101
Cook, T. R., & Hall, A. S. (2017, September). Macroeconomic indicator forecasting with deep neural networks. (Federal Reserve Bank of Kansas City Working Paper No. 17-11). https://doi.org/10.18651/RWP2017-11
Coulombe, G. P., Leroux, M., Stevanovic, D., & Surprenant, S. (2022). How is machine learning useful for macroeconomic forecasting? Journal of Applied Econometrics, 37(5), 920-964. https://doi.org/10.1002/jae.2910
Das, P. K., & Das, P. K. (2024). Forecasting and analyzing predictors of inflation rate: Using machine learning approach. Journal of Quantitative Economics, 22(2), 493-517. https://doi.org/10.1007/s40953-024-00384-z
De Gregorio, J. (2012). Commodity prices, monetary policy, and inflation. IMF Economic Review, 60(4), 600-633. https://doi.org/10.1057/imfer.2012.15
De La Vega, E., Flores, J. J., & Graff, M. (2014). k-Nearest-Neighbor by differential evolution for time series forecasting. In A. Gelbukh, F. C. Espinoza, & S. N. Galicia-Haro (Eds.), Nature-Inspired Computation and Machine Learning (MICAI 2014) (Vol. 8857, pp. 50-60). Springer International Publishing. https://doi.org/10.1007/978-3-319-13650-9_5
de Lima, P. J. F. (1997). On the robustness of nonlinearity tests to moment condition failure. Journal of Econometrics, 76(1), 251-280. https://doi.org/10.1016/0304-4076(95)01791-7
Del Negro, M., Giannoni, M. P., & Schorfheide, F. (2015). Inflation in the great recession and new Keynesian MODELS. American Economic Journal: Macroeconomics, 7(1), 168-196. https://doi.org/10.1257/mac.20140097
de Sá Farias, E., de Mattos, L. B., & Ferreira, D. M. (2024). Spillover effects: Does the inflation targeting system matter? SN Business & Economics, 4(6), 66. https://doi.org/10.1007/s43546-024-00662-1
Devaguptapu, A., & Dash, P. (2021). Global commodity prices and inflation expectations. International Journal of Emerging Markets, 18(5), 1053-1077. https://doi.org/10.1108/IJOEM-11-2020-1382
Dey, R., & Salem, F. M. (2017, August). Gate-variants of Gated Recurrent Unit (GRU) neural networks [Paper presentation]. IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA. https://doi.org/10.1109/MWSCAS.2017.8053243
Dietterich, T. G. (2000). Ensemble methods in machine learning. In J. Kittler & F. Roli (Eds.), Lecture Notes in Computer Science: MCS 2000: Multiple Classifier Systems (Vol. 1857, pp. 1-15). Springer Berlin Heidelberg. https://doi.org/https://doi.org/10.1007/3-540-45014-9_1
Díez, F., Kisat, F., & Okuma, R. (2024). Rethinking transmission of monetary policy in Vietnam (IMF Country Reports Working Paper No. 24/307). https://doi.org/10.5089/9798400290503.002
Eicher, T. S., & Rollinson, Y. G. (2023). The accuracy of IMF crises nowcasts. International Journal of Forecasting, 39(1), 431-449. https://doi.org/10.1016/j.ijforecast.2021.12.007
Eldomiaty, T., Saeed, Y., Hammam, R., & AboulSoud, S. (2020). The associations between stock prices, inflation rates, interest rates are still persistent. Journal of Economics, Finance and Administrative Science, 25(49), 149-161. https://doi.org/10.1108/JEFAS-10-2018-0105
Fama, E. F. (1981). Stock returns, real activity, inflation, and money. The American Economic Review, 71(4), 545-565. http://www.jstor.org/stable/1806180
Faust, J., & Wright, J. H. (2013). Forecasting Inflation. In G. Elliott & A. Timmermann (Eds.), Handbook of Economic Forecasting (Vol. 2, pp. 2-56). Elsevier. https://doi.org/10.1016/B978-0-444-53683-9.00001-3
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2003). Do financial variables help forecasting inflation and real activity in the Euro area? Journal of Monetary Economics, 50(6), 1243-1255. https://doi.org/10.1016/S0304-3932(03)00079-5
Friedman, M. (1989). Quantity theory of money. In J. Eatwell, M. Milgate, & P. Newman (Eds.), Money (pp. 1-40). Palgrave Macmillan UK. https://doi.org/https://doi.org/10.1007/978-1-349-19804-7_1
Friedman, M. (1995). The role of monetary policy. In S. Estrin & A. Marin (Eds.), Essential Readings in Economics (pp. 215-231). Macmillan Education UK. https://doi.org/10.1007/978-1-349-24002-9_11
Friedman, M., & Schwartz, A. J. (1963). A monetary history of the United States, 1867-1960. Princeton University Press. http://www.jstor.org/stable/j.ctt7s1vp
Frisch, H. (1983). Theories of inflation. Cambridge University Press.
Gaglianone, W. P., Guillén, O. T. d. C., & Figueiredo, F. M. R. (2018). Estimating inflation persistence by quantile autoregression with quantile-specific unit roots. Economic Modelling, 73, 407-430. https://doi.org/10.1016/j.econmod.2018.04.018
Gerlach, S., & Stuart, R. (2024). Commodity prices and international Inflation, 1851–1913. Journal of International Money and Finance, 144, 103097. https://doi.org/10.1016/j.jimonfin.2024.103097
Ghosh, R., Bagchi, B., & Chatterjee, S. (2022). The effect of economic policy uncertainty index on the Indian economy in the wake of COVID-19 pandemic. Journal of Economic and Administrative Sciences, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JEAS-08-2021-0172
Ghosh, T., Sahu, S., & Chattopadhyay, S. (2021). Inflation expectations of households in India: Role of oil prices, economic policy uncertainty, and spillover of global financial uncertainty [https://doi.org/10.1111/boer.12244]. Bulletin of Economic Research, 73(2), 230-251. https://doi.org/10.1111/boer.12244
Groen, J. J. J., Paap, R., & Ravazzolo, F. (2013). Real-time inflation forecasting in a changing world. Journal of Business & Economic Statistics, 31(1), 29-44. https://doi.org/10.1080/07350015.2012.727718
GSO. (2011). Socio-economic situation in 2011. General Statistics of Office of Vietnam.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273. https://doi.org/10.1093/rfs/hhaa009
Hall, S. G., Tavlas, G. S., & Wang, Y. (2023). Drivers and spillover effects of inflation: The United States, the euro area, and the United Kingdom. Journal of International Money and Finance, 131, 102776. https://doi.org/10.1016/j.jimonfin.2022.102776
Hanifi, S., Cammarono, A., & Zare-Behtash, H. (2024). Advanced hyperparameter optimization of deep learning models for wind power prediction. Renewable Energy, 221, 119700. https://doi.org/10.1016/j.renene.2023.119700
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer https://doi.org/https://doi.org/10.1007/978-0-387-84858-7
Hauzenberger, N., Huber, F., & Klieber, K. (2023). Real-time inflation forecasting using non-linear dimension reduction techniques. International Journal of Forecasting, 39(2), 901-921. https://doi.org/10.1016/j.ijforecast.2022.03.002
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Huang, N., Qi, Y., & Xia, J. (2024). China’s inflation forecasting in a data-rich environment: based on machine learning algorithms. Applied Economics, 57, 1995-2020. https://doi.org/10.1080/00036846.2024.2322572
Hubrich, K. (2005). Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy? International Journal of Forecasting, 21(1), 119-136. https://doi.org/10.1016/j.ijforecast.2004.04.005
Hui, Y., Wong, W.-K., Bai, Z., & Zhu, Z.-Z. (2017). A new nonlinearity test to circumvent the limitation of Volterra expansion with application. Journal of the Korean Statistical Society, 46(3), 365-374. https://doi.org/10.1016/j.jkss.2016.11.006
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice (2nd ed.). OTexts.
Iaousse, M., Jouilil, Y., Bouincha, M., & Mentagui, D. (2023). A comparative simulation study of classical and machine learning techniques for forecasting time series data. International Journal of Online and Biomedical Engineering, 19(08), pp. 56-65. https://doi.org/10.3991/ijoe.v19i08.39853
IPSOS. (2022). What worries the world. https://www.ipsos.com/en/what-worries-world-december-2022
Ji, M., Liu, P., Deng, Z., & Wu, Q. (2022). Prediction of national agricultural products wholesale price index in China using deep learning. Progress in Artificial Intelligence, 11(1), 121-129. https://doi.org/10.1007/s13748-021-00264-0
Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2), 231-254. https://doi.org/10.1016/0165-1889(88)90041-3
Joseph, A., Potjagailo, G., Chakraborty, C., & Kapetanios, G. (2024). Forecasting UK inflation bottom up. International Journal of Forecasting, 40(4), 1521-1538. https://doi.org/10.1016/j.ijforecast.2024.01.001
Junttila, J. (2001). Structural breaks, ARIMA model and Finnish inflation forecasts. International Journal of Forecasting, 17(2), 203-230. https://doi.org/10.1016/S0169-2070(00)00080-7
Kanaparthi, V. (2024, May). The role of machine learning in predicting and understanding inflation dynamics: Insights from the covid-19 pandemic [Paper presentation]. 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT), Vellore, India. https://doi.org/10.1109/AIIoT58432.2024.10574616
Kapadnis, M. N., Bhattacharyya, A., & Subasi, A. (2023). Artificial intelligence based Alzheimer’s disease detection using deep feature extraction. In A. Subasi (Ed.), Applications of Artificial Intelligence in Medical Imaging (pp. 333-355). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-18450-5.00007-4
Kim, D.-H., & Lin, S.-C. (2010). Dynamic relationship between inflation and financial development. Macroeconomic Dynamics, 14(3), 343-364. https://doi.org/10.1017/S1365100509090312
Kim, T.-Y., & Cho, S.-B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72-81. https://doi.org/10.1016/j.energy.2019.05.230
Kingma, D. P., & Ba, J. L. (2015, May). Adam: A method for stochastic optimization [Paper presentation]. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA.
Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255
Kose, M. A., Matsuoka, H., Panizza, U., & Vorisek, D. (2019). Inflation expectations: Review and evidence. In J. Ha, M. A. Kose, & F. Ohnsorge (Eds.), Inflation in emerging and developing economies: Evolution, drivers, and policies. The World bank.
Lastunen, J., & Richiardi, M. (2023). Forecasting recovery from COVID-19 using financial data: An application to Vietnam. World Development Perspectives, 30, 100503. https://doi.org/10.1016/j.wdp.2023.100503
Le, T. D., Tran, S. H., Ngo, T., & Bui, H. D. (2024). Predicting Vietnam's economic growth using machine learning approaches. Empirical Economics Letters, 23(2), 119-135. https://doi.org/10.5281/zenodo.10893067
Lee, T.-H., White, H., & Granger, C. W. J. (1993). Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests. Journal of Econometrics, 56(3), 269-290. https://doi.org/10.1016/0304-4076(93)90122-L
Li, S., & Zhang, X. (2020). Research on orthopedic auxiliary classification and prediction model based on XGBoost algorithm. Neural Computing and Applications, 32(7), 1971-1979. https://doi.org/10.1007/s00521-019-04378-4
Li, Y.-S., Pai, P.-F., & Lin, Y.-L. (2023). Forecasting inflation rates be extreme gradient boosting with the genetic algorithm. Journal of Ambient Intelligence and Humanized Computing, 14(3), 2211-2220. https://doi.org/10.1007/s12652-022-04479-4
Lim, J. (1987). The new structuralist critique of the monetarist theory of inflation: The case of the Philippines. Journal of Development Economics, 25(1), 45-61. https://doi.org/10.1016/0304-3878(87)90074-5
Maccarrone, G., Morelli, G., & Spadaccini, S. (2021). GDP forecasting: Machine learning, linear or autoregression? [Original Research]. Frontiers in Artificial Intelligence, 4. https://doi.org/10.3389/frai.2021.757864
Malladi, R. K. (2024). Benchmark analysis of machine learning methods to forecast the U.S. annual inflation rate during a high-decile inflation period. Computational Economics, 64(1), 335-375. https://doi.org/10.1007/s10614-023-10436-w
Martínez, F., Frías, M. P., Pérez, M. D., & Rivera, A. J. (2019). A methodology for applying k-nearest neighbor to time series forecasting. Artificial Intelligence Review, 52(3), 2019-2037. https://doi.org/10.1007/s10462-017-9593-z
Maurya, P. K., Bansal, R., & Mishra, A. K. (2023). Russia–Ukraine conflict and its impact on global inflation: an event study-based approach. Journal of Economic Studies, 50(8) 1824-1846. https://doi.org/10.1108/JES-01-2023-0003
McCallum, B. T., & Nelson, E. (2010). Chapter 3 - Money and Inflation: Some Critical Issues. In B. M. Friedman & M. Woodford (Eds.), Handbook of Monetary Economics (Vol. 3, pp. 97-153). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53238-1.00003-X
Medeiros, M. C., Vasconcelos, G. F. R., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), 98-119. https://doi.org/10.1080/07350015.2019.1637745
Mehrotra, A., & Yetman, J. (2015). Financial inclusion - issues for central banks. BIS Quarterly Review, March 2015, 83-96.
Midi, H., Sarkar, S. K., & Rana, S. (2010). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13(3), 253-267. https://doi.org/10.1080/09720502.2010.10700699
Mirza, N., Rizvi, S. K. A., Naqvi, B., & Umar, M. (2024). Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting. International Review of Financial Analysis, 94, 103238. https://doi.org/10.1016/j.irfa.2024.103238
Mishkin, F. S. (1991). A multi-country study of the information in the shorter maturity term structure about future inflation. Journal of International Money and Finance, 10(1), 2-22. https://doi.org/10.1016/0261-5606(91)90024-E
Mishkin, F. S. (2009). Is monetary policy effective during financial crises? American Economic Review, 99(2), 573–577. https://doi.org/10.1257/aer.99.2.573
Murugesan, R., Mishra, E., & Krishnan, A. H. (2022). Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, bi-LSTM, stacked LSTM, CNN LSTM, and convolutional LSTM. International Journal of Sustainable Agricultural Management and Informatics, 8(3), 242-277. https://doi.org/10.1504/IJSAMI.2022.125757
Naghi, A. A., O'Neill, E., & Danielova Zaharieva, M. (2024). The benefits of forecasting inflation with machine learning: New evidence. Journal of Applied Econometrics, n/a(n/a), 1-11. https://doi.org/10.1002/jae.3088
Nakamura, E. (2005). Inflation forecasting using a neural network. Economics Letters, 86(3), 373-378. https://doi.org/10.1016/j.econlet.2004.09.003
The National Assembly of Vietnam. (2010). The Banking Act No. 46/2010/QH12. https://thuvienphapluat.vn/van-ban/Tien-te-Ngan-hang/Law-No-46-2010-QH12-of-June-16-2010-on-the-State-Bank-of-Vietnam-114051.aspx
Nguyen, D. D. (2024). Money/asset ratio as a predictor of inflation. The Quarterly Review of Economics and Finance, 97, 101896. https://doi.org/10.1016/j.qref.2024.101896
Nguyen, N.-T., & Tran, T.-T. (2015). Mathematical development and evaluation of forecasting models for accuracy of inflation in developing countries: A case of vietnam. Discrete Dynamics in Nature and Society, 2015, 858157. https://doi.org/10.1155/2015/858157
Nguyen, T. N., Pham, T. T. X., & Nguyen, T. C. (2022). Forecasts of GDP growth and inflation under the influence of the covid-19 pandemic: The case of Vietnam. In N. Ngoc Thach, D. T. Ha, N. D. Trung, & V. Kreinovich (Eds.), Prediction and Causality in Econometrics and Related Topics (pp. 483-497). Springer International Publishing. https://doi.org/10.1007/978-3-030-77094-5_38
Nobre, J., & Neves, R. F. (2019). Combining Principal Component Analysis, Discrete Wavelet Transform and XGBoost to trade in the financial markets. Expert Systems with Applications, 125, 181-194. https://doi.org/10.1016/j.eswa.2019.01.083
Öğünç, F., Akdoğan, K., Başer, S., Chadwick, M. G., Ertuğ, D., Hülagü, T., Kösem, S., Özmen, M. U., & Tekatlı, N. (2013). Short-term inflation forecasting models for Turkey and a forecast combination analysis. Economic Modelling, 33, 312-325. https://doi.org/10.1016/j.econmod.2013.04.001
Ooft, G., Bhaghoe, S., & Franses, P. H. (2024). Forecasting annual inflation using weekly money supply. Journal of Quantitative Economics, 22(1), 25-43. https://doi.org/10.1007/s40953-023-00376-5
Orphanides, A., & van Norden, S. (2005). The reliability of inflation forecasts based on output gap estimates in real time. Journal of Money, Credit and Banking, 37(3), 583-601. http://www.jstor.org/stable/3839169
Ouyang, A. Y., & Rajan, R. S. (2019). The impact of financial development on the effectiveness of inflation targeting in developing economies. Japan and the World Economy, 50, 25-35. https://doi.org/10.1016/j.japwor.2019.03.003
Ozden, E., & Guleryuz, D. (2022). Optimized machine learning algorithms for investigating the relationship between economic development and human capital. Computational Economics, 60(1), 347-373. https://doi.org/10.1007/s10614-021-10194-7
Özgür, Ö., & Akkoç, U. (2022). Inflation forecasting in an emerging economy: Selecting variables with machine learning algorithms. International Journal of Emerging Markets, 17(8), 1889-1908. https://doi.org/10.1108/IJOEM-05-2020-0577
Pham, T., Le, T., Dang, D., Bui, H., Pham, H., Truong, L., Nguyen, M., Vo, H., & Tho, Q. T. (2022). ARNS: A Data-Driven Approach for SoH Estimation of Lithium-Ion Battery Using Nested Sequence Models With Considering Relaxation Effect. IEEE Access, 10, 117067-117083. https://doi.org/10.1109/ACCESS.2022.3217478
Pham, X. T. T., Le, T. D. Q., & Nguyen, T. N. (2022). Neural network models for inflation forecasting: A revisit. In N. Ngoc Thach, D. T. Ha, N. D. Trung, & V. Kreinovich (Eds.), Prediction and causality in econometrics and related topics (pp. 152-168). Springer International Publishing. https://doi.org/https://doi.org/10.1007/978-3-030-77094-5_15
Pinto, J. M., & Marçal, E. F. (2020). Inflation rate forecasting: Extreme learning machine as a model combination method. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds) Theory and applications of time series analysis. ITISE 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-56219-9_24
Plakandaras, V., Gogas, P., Papadimitriou, T., & Gupta, R. (2017). The informational content of the term spread in forecasting the US inflation rate: A nonlinear approach. Journal of Forecasting, 36(2), 109-121. https://doi.org/10.1002/for.2417
Priambodo, B., Rahayu, S., Hazidar, A. H., Naf’an, E., masril, M., Handriani, I., Pratama Putra, Z., Kudr Nseaf, A., Setiawan, D., & Jumaryadi, Y. (2019). Predicting GDP of indonesia using K-Nearest Neighbour regression. Journal of Physics: Conference Series, 1339(1), 012040. https://doi.org/10.1088/1742-6596/1339/1/012040
Quan, S. J. (2024). Comparing hyperparameter tuning methods in machine learning based urban building energy modeling: A study in Chicago. Energy and Buildings, 317, 114353. https://doi.org/10.1016/j.enbuild.2024.114353
Rodríguez-Vargas, A. (2020). Forecasting Costa Rican inflation with machine learning methods. Latin American Journal of Central Banking, 1(1), 100012. https://doi.org/10.1016/j.latcb.2020.100012
Sandri, M., & Zuccolotto, P. (2008). A bias correction algorithm for the Gini variable importance measure in classification trees. Journal of Computational and Graphical Statistics, 17(3), 611-628. https://doi.org/10.1198/106186008X344522
SBV. (2008). Some observations on the factors affecting the Vietnamese inflation. State Bank of Vietnam.
Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling, 406, 109-120. https://doi.org/10.1016/j.ecolmodel.2019.06.002
Schwarzer, J. A. (2018). Retrospectives: cost-push and demand-pull inflation: Milton Friedman and the "cruel dilemma". Journal of Economic Perspectives, 32(1), 195–210. https://doi.org/10.1257/jep.32.1.195
Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
Staffini, A. (2023). A CNN-BiLSTM architecture for macroeconomic time series forecasting. Engineering Proceedings, 39(1), 33. https://doi.org/10.3390/engproc2023039033
Stock, J. H., & Watson, M. W. (1999). Forecasting inflation. Journal of Monetary Economics, 44(2), 293-335. https://doi.org/10.1016/S0304-3932(99)00027-6
Stock, J. H., & Watson, M. W. (2007). Why has U.S. Inflation become harder to forecast? Journal of Money, Credit and Banking, 39(s1), 3-33. https://doi.org/10.1111/j.1538-4616.2007.00014.x
Stock, J. H., & Watson, M. W. (2009). Phillips curve inflation forecasts. In J. Fuhrer, Y. K. Kodrzycki, J. S. Little, & G. P. Olivei (Eds.), Understanding Inflation and the Implications for Monetary Policy: A Phillips Curve Retrospective (pp. 99-202). The MIT Press. https://doi.org/10.7551/mitpress/9780262013635.003.0003
Stock, J. H., & Watson, M. W. (2010). Modeling inflation after the crisis (No. w16488). National Bureau of Economic Research. https://doi.org/10.3386/w16488
Szarek, D., Jabłoński, I., Zimroz, R., & Wyłomańska, A. (2023). Non-Gaussian feature distribution forecasting based on ConvLSTM neural network and its application to robust machine condition prognosis. Expert Systems with Applications, 230, 120588. https://doi.org/10.1016/j.eswa.2023.120588
Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. International Journal of Forecasting, 16(4), 437-450. https://doi.org/10.1016/S0169-2070(00)00065-0
Theoharidis, A. F., Guillén, D. A., & Lopes, H. (2023). Deep learning models for inflation forecasting. Applied Stochastic Models in Business and Industry, 39(3), 447-470. https://doi.org/10.1002/asmb.2757
Thu, L. H., & Leon-Gonzalez, R. (2021). Forecasting macroeconomic variables in emerging economies. Journal of Asian Economics, 77, 101403. https://doi.org/10.1016/j.asieco.2021.101403
Tong, J., Xie, L., Yang, W., Zhang, K., & Zhao, J. (2023). Enhancing time series forecasting: A hierarchical transformer with probabilistic decomposition representation. Information Sciences, 647, 119410. https://doi.org/10.1016/j.ins.2023.119410
Tsuchiya, Y. (2023). Assessing the World Bank’s growth forecasts. Economic Analysis and Policy, 77, 64-84. https://doi.org/10.1016/j.eap.2022.10.017
Ülke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. Neural Computing and Applications, 30(5), 1519-1527. https://doi.org/10.1007/s00521-016-2766-x
Wang, C., Du, W., Zhu, Z., & Yue, Z. (2020). The real-time big data processing method based on LSTM or GRU for the smart job shop production process. Journal of Algorithms & Computational Technology, 14, 1748302620962390. https://doi.org/10.1177/1748302620962390
Wang, J.-H., Lin, G.-F., Chang, M.-J., Huang, I. H., & Chen, Y.-R. (2019). Real-time water-level forecasting using dilated causal convolutional neural networks. Water Resources Management, 33(11), 3759-3780. https://doi.org/10.1007/s11269-019-02342-4
Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural computation, 8(7), 1341-1390. https://doi.org/10.1162/neco.1996.8.7.1341
Wong, W.-K., Cheng, Y., & Yue, M. (2024). Could regression of stationary series be spurious? Asia-Pacific Journal of Operational Research, 2440017. https://doi.org/10.1142/S0217595924400177
Wong, W.-K., & Pham, M. T. (2025). Could the correlation of a stationary series with a non-stationary series obtain meaningful outcomes? Annals of Financial Economics, 20(03), 2550015. https://doi.org/10.1142/S2010495225500150
Wright, J. H. (2009). Forecasting US inflation by Bayesian model averaging. Journal of Forecasting, 28(2), 131-144. https://doi.org/10.1002/for.1088
Wu, J. M.-T., Li, Z., Herencsar, N., Vo, B., & Lin, J. C.-W. (2023). A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. Multimedia Systems, 29(3), 1751-1770. https://doi.org/10.1007/s00530-021-00758-w
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., & Yu, P. S. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14, 1-37. https://doi.org/10.1007/s10115-007-0114-2
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., & Macherey, K. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv. https://doi.org/10.48550/arXiv.1609.08144
Yang, C., & Guo, S. (2021). Inflation prediction method based on deep learning. Computational Intelligence and Neuroscience, 2021(1), 1071145. https://doi.org/10.1155/2021/1071145
Yoon, J. (2021). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics, 57(1), 247-265. https://doi.org/10.1007/s10614-020-10054-w
Zahara, S., & Ilmiddaviq, M. (2020). Consumer price index prediction using Long Short Term Memory (LSTM) based cloud computing. Journal of Physics: Conference Series, 1456(1), 012022. https://doi.org/10.1088/1742-6596/1456/1/012022
Published
Issue
Section
License
Copyright (c) 2026 Tu DQ Le (Corresponding Author); Son H Tran, Thanh Ngo, Hung D Bui (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Scientific and Business World