Exploring Geographical Variability in Sugarcane Yields: A Geographically Weighted Panel Regression Approach with MM Estimation
DOI:
https://doi.org/10.47654/v28y2024i2p35-65Keywords:
GWPR, fixed effects, outliers, M-estimation, sugarcane yields, geographical variabilityAbstract
Purpose: This study aims to apply Geographically Weighted Panel Regression (GWPR) to panel data analysis, specifically to examine the influence of geographical variables and local variability on sugarcane yields in East Java. GWPR integrates the principles of panel regression with geographically weighted regression (GWR) analysis to capture varying relationships across different locations, considering panel fixed effects in its model. In the context of Decision Sciences, this research develops an innovative method for more accurate decision-making in the agricultural sector, taking into account geographical variability often overlooked in traditional decision models.
Design/Methodology/Approach: The study adopts a weighted least squares approach, sensitive to outliers, for parameter estimation within the GWPR model. This paper addresses the limitations of conventional analysis models, which often neglect the importance of location variability in data-driven decision-making. This approach is then applied to a dataset of sugarcane yields from East Java to assess how it can manage variability and outliers in the data.
Findings: The analysis reveals that the size of plantation areas plays a crucial role in determining sugarcane yields, with significant variability detected across locations in East Java. The study identifies other factors contributing to sugarcane yield variations, such as soil conditions, climate, and farming practices. This paper's contributions include the application of the GWPR methodology in agriculture, providing new insights and enriching the literature on the impact of geographical and local factors on agricultural yields.
Practical Implications: These findings have significant implications for developing agricultural strategies in East Java, particularly in the context of land management and resource allocation.
Originality/Value: This study is original because it integrates GWR methods into panel data analysis, providing a new analytical framework to accommodate geographical variability in panel data.
References
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers.
Anselin, L. (2019). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial analytical perspectives on GIS (pp. 111–126). Routledge
Atumo, E., Li, H., & Jiang, X. (2022). Segment-Level Spatial Heterogeneity Of Arterial Crash Frequency Using Locally Weighted Generalized Linear Models. Transportation Research Record Journal of the Transportation Research Board, 2677(3), 1637-1653. https://doi.org/10.1177/03611981221126510
Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data. John Wiley & Sons.
Bian, G., McAleer, M., & Wong, W. K. (2013). Robust estimation and forecasting of the capital asset pricing model. Annals of Financial Economics, 8(02), 1350007.
Black, E., Vidale, P., Verhoef, A., Cuadra, S., Osborne, T., & Hoof, C. (2012). Cultivating C4 Crops In A Changing Climate: Sugarcane In Ghana. Environmental Research Letters, 7(4), 044027. https://doi.org/10.1088/1748-9326/7/4/044027
Box, G. E. (1953). Non-Normality And Tests On Variances. Biometrika, 40(3/4), 318-335.
Breusch, T. S., & Pagan, A. R. (1979). A Simple Test For Heteroscedasticity And Random Coefficient Variation. Econometrica, 47(5), 1287-1294.
Brunsdon, C., Fotheringham, A., & Charlton, M. (1996). Geographically Weighted Regression: A Method For Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281-298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
Chang, P. C., Wang, Y. W., & Liu, C. H. (2007). The Development Of A Weighted Evolving Fuzzy Neural Network For PCB Sales Forecasting. Expert Systems with Applications, 32(1), 86-96.
Chen, C. (2002). Paper 265-27 Robust Regression And Outlier Detection With The ROBUSTREG Procedure. In Proceedings of the Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference.
Chen, C., & Liu, L. (1993). Forecasting Time Series With Outliers. Journal of Forecasting, 12(1), 13-35. https://doi.org/10.1002/for.3980120103
Chen, J., Liu, L., Liu, H., Long, D., Xu, C., & Zhou, H. (2020). The Spatial Heterogeneity Of Factors Of Drug Dealing: A Case Study From Zg, China. International Journal of Geo-Information, 9(4), 205. https://doi.org/10.3390/ijgi9040205
Cleveland, W. S., & Devlin, S. J. (1988). Locally Weighted Regression: An Approach To Regression Analysis By Local Fitting. Journal of the American Statistical Association, 83(403), 596-610.
Combettes, P. L., & Muller, C. L. (2020). Perspective Maximum Likelihood-Type Estimation Via Proximal Decomposition. Electronic Journal of Statistics, 14(1): 207-238. https://doi.org/10.1214/19-EJS1662
Ehlkes, L., Krefis, A. C., Kreuels, B., Krumkamp, R., Adjei, O., Ayim-Akonor, M., ... & May, J. (2014). Geographically Weighted Regression Of Land Cover Determinants Of Plasmodium Falciparum Transmission In The Ashanti Region Of Ghana. International journal of health geographics, 13, 1-11. https://doi.org/10.1186/1476-072x-13-35
Erda, G., & Djuraidah, A. (2019). Outlier Handling Of Robust Geographically And Temporally Weighted Regression. In Journal of Physics: Conference Series (Vol. 1175, No. 1, p. 012041). IOP Publishing.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. E. (2002). Geographically Weighted Regression : the Analysis of Spatially Varying Relationship. John Wiley & Sons. England
Fundisi, E., Dlamini, S., Mokhele, T., Weir-Smith, G., & Motolwana, E. (2023). Exploring Determinants Of Hiv/Aids Self-Testing Uptake In South Africa Using Generalised Linear Poisson And Geographically Weighted Poisson Regression. Healthcare, 11(6), 881. https://doi.org/10.3390/healthcare11060881
Gujarati, D. N., & Porter, D. (2009). Basic Econometrics. Mc Graw Hill Inc. New York.
Guo, Y., Wong, W. K., Su, N., Ghardallou, W., Gavilán, J. C. O., Uyen, P. T. M., & Cong, P. T. (2023). Resource Curse Hypothesis And Economic Growth: A Global Analysis Using Bootstrapped Panel Quantile Regression Analysis. Resources Policy, 85, 103790.
Halunga, A. G., Orme, C. D., & Yamagata, T. (2017). A Heteroskedasticity Robust Breusch–Pagan Test For Contemporaneous Correlation In Dynamic Panel Data Models. Journal of econometrics, 198(2), 209-230.
Harris, P., Brunsdon, C., & Charlton, M. (2011). Geographically Weighted Principal Components Analysis. International Journal of Geographical Information Science, 25(10), 1717-1736.
Harris, P., Brunsdon, C., Charlton, M., Juggins, S., & Clarke, A. (2014). Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods. Mathematical Geosciences. 46(1): 1–31.
Herwartz, H. (2007). Testing For Random Effects In Panel Models With Spatially Correlated Disturbances. Statistica Neerlandica, 61(4), 466-487.
Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126. https://doi.org/10.1007/s10462-004-4304-y
Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. The stata journal, 7(3), 281-312.
Hsiao, C. (2003). Analysis of Panel Data. Cambridge University Press. New York International Journal of Finance & Banking Studies (2147-4486), 9(1), 58-67.
Huber, P. J. (1973). Robust Regression: Asymptotics, Conjectures and Monte Carlo. Annals of Statistics, 1, 799-821. http://dx.doi.org/10.1214/aos/1176342503
Isnaini, B., Dyah, S. U., & Nur Aidi, M. (2019). Estimating the Parameters of a Robust Geographically Weighted Regression Model in Gross Regional Domestics Product in East Java. International Journal of Sciences: Basic and Applied Research (IJSBAR), 48(3), 150–160.
Jones, M., Singels, A., & Ruane, A. (2015). Simulated Impacts Of Climate Change On Water Use And Yield Of Irrigated Sugarcane In South Africa. Agricultural Systems, 139, 260-270. https://doi.org/10.1016/j.agsy.2015.07.007
Kannan, K., & Manoj, K. (2015). Outlier Detection In Multivariate Data. Applied Mathematical Sciences, 9, 2317-2324. https://doi.org/10.12988/ams.2015.53213
Kementerian Pertanian. (2023). Analisis Kinerja Perdagangan Gula. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal, Kementerian Pertanian.
Knight, N., & Wang, J. (2009). A Comparison Of Outlier Detection Procedures And Robust Estimation Methods In Gps Positioning. Journal of Navigation, 62(4), 699-709. https://doi.org/10.1017/s0373463309990142
Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of econometrics, 17(1), 107-112.
Kudraszow, N. L., & Maronna, R. A. (2011). Estimates of MM type for the multivariate linear model. Journal of Multivariate Analysis, 102(9), 1280-1292.
Lee, M., Lin, V., Mei, Z., Mei, J., Chan, E., Shipp, D., Chen, J. M., & Le, T. (2023). Examining The Spatial Varying Effects Of Sociodemographic Factors On Adult Cochlear Implantation Using Geographically Weighted Poisson Regression. Otology & Neurotology, 44(5), e287-e294. https://doi.org/10.1097/mao.0000000000003861
LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman and Hall/CRC.
LeSage, J. P. (2004). A Family of Geographically Weighted Regression Models. Advances in Spatial Econometrics : 241-264
Liu, J., Wang, Y., Fu, C., Guo, J., & Yu, Q. (2016). A Robust Regression Based On Weighted LSSVM And Penalized Trimmed Squares. Chaos, Solitons & Fractals, 89, 328-334.
Liu, Y., Ji, Y., Shi, Z., & Gao, L. (2018). The Influence Of The Built Environment On School Children’s Metro Ridership: An Exploration Using Geographically Weighted Poisson Regression Models. Sustainability, 10(12), 4684. https://doi.org/10.3390/su10124684
Ma, Z., Xue, Y., & Hu, G. (2021). Geographically Weighted Regression Analysis For Spatial Economics Data: A Bayesian Recourse. International Regional Science Review, 44(5), 582-604.
Manyangadze, T., Chimbari, M., Macherera, M., & Mukaratirwa, S. (2017). Micro-Spatial Distribution Of Malaria Cases And Control Strategies At Ward Level In Gwanda District, Matabeleland South, Zimbabwe. Malaria Journal, 16(1). https://doi.org/10.1186/s12936-017-2116-1
Manyangadze, T., Chimbari, M., & Mavhura, E. (2021). Spatial Heterogeneity Association Of Hiv Incidence With Socio-Economic Factors In Zimbabwe. Journal of Geographical Research, 4(3), 51-60. https://doi.org/10.30564/jgr.v4i3.3466
Morel, J., Todoroff, P., Bégué, A., Bury, A., Martiné, J., & Petit, M. (2014). Toward A Satellite-Based System Of Sugarcane Yield Estimation And Forecasting In Smallholder Farming Conditions: A Case Study On Reunion Island. Remote Sensing, 6(7), 6620-6635. https://doi.org/10.3390/rs6076620
Müller, E., Schiffer, M., & Seidl, T. (2011). Statistical Selection Of Relevant Subspace Projections For Outlier Ranking. 2011 IEEE 27th International Conference on Data Engineering, Hannover, Germany, 2011, pp. 434-445, https://doi.org/10.1109/ICDE.2011.5767916.
Nakaya, T., Fotheringham, A., Brunsdon, C., & Charlton, M. (2005). Geographically Weighted Poisson Regression For Disease Association Mapping. Statistics in Medicine, 24(17), 2695-2717. https://doi.org/10.1002/sim.2129
Naudé, W. A. (2004). The Effects Of Policy, Institutions And Geography On Economic Growth In Africa: An Econometric Study Based On Cross‐Section And Panel Data. Journal of International Development, 16(6), 821-849.
Nilsson, P. (2014). Natural amenities in urban space–A Geographically Weighted Regression Approach. Landscape and Urban Planning, 121, 45-54.
Ningrum, A. S., Rusgiyono, A., & Prahutama, A. (2020, April). Village Classification Index Prediction Using Geographically Weighted Panel Regression. In Journal of Physics: Conference Series (Vol. 1524, No. 1, p. 012040). IOP Publishing.
Özdemir, Ş., & Arslan, O. (2021). Empirical likelihood-MM (EL-MM) Estimation For The Parameters Of A Linear Regression Model. Statistics, 55(1), 45-67.
Poliart, A., Kirakoya-Samadoulougou, F., Ouedraogo, M., Collart, P., Dubourg, D., & Samadoulougou, S. (2021). Using Geographically Weighted Poisson Regression To Examine The Association Between Socioeconomic Factors And Hysterectomy Incidence In Wallonia, Belgium. BMC Women S Health, 21(1). https://doi.org/10.1186/s12905-021-01514-y
Prasetya, R. (2023). Unpacking Outlier With Weight Least Square (Implemented On Pepper Plantations Data). Parameter Journal of Statistics, 2(3), 24-31. https://doi.org/10.22487/27765660.2022.v2.i3.16138
Rahman, M., & Robson, A. (2016). A Novel Approach For Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study On Bundaberg Region. Advances in Remote Sensing, 05(02), 93-102. https://doi.org/10.4236/ars.2016.52008
Rasekhi, S., Anousheh, S., Ranjbar, H., & Moghimi, M. (2013). Regional Spillover Research And Development Investment: A Geographically Weighted Regression Approach. African Journal of Business Management, 7(33), 3212-3219.
Rousseeuw, P., & Yohai, V. (1984, January). Robust regression by means of S-estimators. In Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 “Stochastische Mathematische Modelle”, Heidelberg 1983 (pp. 256-272). New York, NY: Springer US.
Sugasawa, S., & Murakami, D. (2022). Adaptively Robust Geographically Weighted Regression. Spatial Statistics, 48, 100623.
Sumari, A. D. W., Charlinawati, D. S., & Ariyanto, Y. (2022). A Simple Approach Using Statistical-Based Machine Learning To Predict The Weapon System Operational Readiness. Proceedings of the International Conference on Data Science and Official Statistics, 2021(1), 343-351.
Susanti, Y., Pratiwi, H., Sulistijowati, S., & Liana, T. (2014). M estimation, S estimation, and MM estimation in robust regression. International Journal of Pure and Applied Mathematics, 91(3), 349-360. https://doi.org/10.12732/ijpam.v91i3.7.
Tavares, J., & Costa, A. (2021). Spatial Modelling And Analysis Of The Determinants Of Property Crime In Portugal. Isprs International Journal of Geo-Information, 10(11), 731. https://doi.org/10.3390/ijgi10110731
Thissen, M., de Graaff, T., & van Oort, F. (2016). Competitive Network Positions In Trade And Structural Economic Growth: A Geographically Weighted Regression Analysis For European Regions. Papers in Regional Science, 95(1), 159-180.
Thompson, F. S. (2018). Characterisation Of Heterogeneity And Spatial Autocorrelation In Phase Separating Mixtures Using Moran’s. Journal of Colloid and Interface Science. Vol. 513, pp. 180-187.
Tukey, J. W. (1960). Conclusions vs decisions. Technometrics, 2(4), 423-433.
Tyler, D. E. (2008). Robust Statistics: Theory And Methods. Journal of the American Statistical Association, 103(482), 888-889.
Vogelsang, T. J. (2012). Heteroskedasticity, Autocorrelation, And Spatial Correlation Robust Inference In Linear Panel Models With Fixed-Effects. Journal of Econometrics, 166(2), 303-319.
Weisberg, S. (2005). Applied Linear Regression. 3rd ed. Canada : JohnWiley and Sons Inc.
Wong, W., & Bian, G. (2000). Robust estimation in Capital Asset Pricing Model. Journal of Applied Mathematics and Decision Science. 4. 65-82. https://doi.org/10.1155/S1173912600000043.
Wong, W., Leung, P., & Ng, H. Y. (2011). An Improved Estimation to Make Markowitz's Portfolio Optimization Theory Users Friendly and Estimation Accurate with Application on the US Stock Market Investment. European Journal of Operational Research. https://doi.org/222. 10.2139/ssrn.1968889.
Wrenn, D. H., & Sam, A. G. (2014). Geographically And Temporally Weighted Likelihood Regression: Exploring The Spatiotemporal Determinants Of Land Use Change. Regional Science and Urban Economics, 44, 60-74.
Wu, S., Wang, Z., Du, Z., Huang, B., Zhang, F., & Liu, R. (2020). Geographically And Temporally Neural Network Weighted Regression For Modelling Spatiotemporal Non-Stationary Relationships. International Journal of Geographical Information Science, 35(3), 582-608.
Xu, B., Xu, L., Xu, R., & Luo, L. (2017). Geographical analysis of CO2 emissions in China's manufacturing industry: A geographically weighted regression model. Journal of Cleaner Production, 166, 628-640.
Xu, P., & Huang, H. (2015). Modelling crash spatial heterogeneity: Random parameter versus geographically weighting. Accident Analysis & Prevention, 75, 16-25.
Xu, Y., Zhang, J., Long, Z., Tang, H., & Zhang, X. (2019). Hourly Urban Water Demand Forecasting Using The Continuous Deep Belief Echo State Network. Water, 11(2), 351.
Yohai, V. J. (1987). High Breakdown-Point And High Efficiency Robust Estimates For Regression. The Annals of statistics, 642-656.
Yu, D. (2010). Exploring Spatiotemporally Varying Regressed Relationships: The Geographically Weighted Panel Regression Analysis. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences. 38 (2) : 134-139
Yu, D., Zhang, Y., Wu, X., Li, D., & Li, G. (2021). The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis. Land Use Policy, 100, 104935.
Zeleke, A., Miglio, R., Palumbo, P., Malaguti, E., Chiari, L., & Due, U. (2022). Spatiotemporal heterogeneity of sars-cov-2 diffusion at the city level using geographically weighted poisson regression model: the case of bologna, italy. Geospatial Health, 17(2). https://doi.org/10.4081/gh.2022.1145
Zhang, H., Liu, Y., Chen, F., Mi, B., Zeng, L., & Pei, L. (2021). The Effect Of Sociodemographic Factors On Covid-19 Incidence Of 342 Cities In China: A Geographically Weighted Regression Model Analysis. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-06128-1
Zhang, H., & Mei, C. (2011). Local Least Absolute Deviation Estimation Of Spatially Varying Coefficient Models: Robust Geographically Weighted Regression Approaches. International Journal of Geographical Information Science, 25(9), 1467-1489. https://doi.org/10.1080/13658816.2010.528420
Zhou, S., Zhou, S., Liu, L., Zhang, M., Kang, M., Xiao, J., & Song, T. (2019). Examining The Effect Of The Environment And Commuting Flow From/To Epidemic Areas On The Spread Of Dengue Fever. International Journal of Environmental Research and Public Health, 16(24), 5013. https://doi.org/10.3390/ijerph16245013.
Published
Issue
Section
License
Copyright (c) 2024 Advances in Decision Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Scientific and Business World